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The deforestation has led to local loss of species and important ecosystem
services performed by them, causing ecological and economic losses. It is
proposed that the reforestation of such areas aims to reduce those
impacts. However, particularly in the tropics, little is known about the real
success of different types of reforestation in the recovery of the species,
and especially of the population parameters. Here we evaluated whether
different types of reforestations affect Trypoxylon (Trypargilum) lactitarse
Saussure (Hymenoptera: Crabronidae) in terms of abundance, percentage
of emergence, proportion of males, fluctuating asymmetry, and foraging
capacity. We compared primary forest (control) data to data collected in
five different habitats: pasture, secondary forest, and tree plantations of
Teak, Ficus, and a mixture of native species. The abundance of T. lactitarse
was higher in tree plantations than in pasture. However, among the ana-
lyzed parameters, Teak plantation presented lower emergence percent-
age and themajority of individuals born weremales. The emerged females
in this habitat showed higher asymmetry and lower foraging capacity.
Ficus showed lower individual abundance and mixed plantation showed
lower emergence percentage, with both plantation types showing higher
male emergence. On the other hand, in secondary forest, the analyzed
parameters did not differ in relation to the primary forest, being the
habitat more efficient in relation to those with tree planting. The changes
in population parameters of T. lactitarse in different reforestations and
particularly on Teak monocultures were probably attributed to indirect
effects, such as low food availability and inadequate environmental
conditions.

Introduction

In the last decades, the increase in agriculture and cattle
ranching activities has been the main cause of the disappear-
ance of tropical forests (Fearnside 2006, Newbold et al
2015). In the Amazon rainforest, thousands of hectares are
lost every year and, as a consequence, many species of the
flora and fauna are extinct (Gibbs et al 2010, Laurance et al
2011). Associated to these extinctions, there is the loss of

services which are important for the maintenance and sta-
bility of the ecosystem, leading to enormous ecological, eco-
nomic, and social losses (Didham 1997, Fontaine et al 2006,
Barral et al 2015, Mitchell et al 2015, Fearnside & Figueiredo
2017). Therefore, efforts are increasingly required to reduce
the effects of deforestation and to promote biodiversity re-
covery (Padula & Silva 2005). In fact, every year, billions of
dollars are spent on the conservation and recovery of biodi-
versity (Bueno et al 2013). Restoration of an environment is
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an expensive intervention, and species chosen for planting in
reforested areas can drive the whole ecological succession,
influencing regional diversity, ecological interactions, and
ecosystem services (Falcão et al 2015).

To evaluate the efficiency of these new reforested areas in
the recovery of environmental quality, the use of species as
bioindicators has proved to be a very effective tool (Edge
2005, Uys et al 2006, Engelbrecht 2010, McGeoch et al
2011). The sensitivity of some of these species to differences
in resources and conditions among different habitats may
prevent their occurrence (Dutra & Marco 2015). However,
some of these species may colonize and persist on subopti-
mal habitats, even though suffering indirect effects on their
populations. For these species, it is expected that the stress
caused by suboptimal conditions may cause changes at the
individual and population levels (Clarke 1993, Sanseverino &
Nessimian 2008).

Environmental conditions and resources affected by dis-
turbances, such as adverse temperatures, competition, and
food scarcity, are known to be factors that may cause alter-
ations in the development of the organisms during their on-
togeny (Leung & Forbes 1996; Benítez 2013). One measure
commonly used to assess the effect of these disturbances is
the increase of the asymmetry (measured by fluctuating
asymmetry, hereafter FA) that occurs in bilateral organisms
(Palmer & Strobeck 1986). The increase of asymmetry
reduces the fitness of the affected organisms in different
ways depending on the taxon. However, regardless of the
taxon, the asymmetry value found in the individuals allows
us to assess the levels of stress to which they were subjected
during their development (Leung & Forbes 1996; Pinto et al
2012). Thus, FA can be seen as a metric in the assessment of
the quality of the environment for the organisms that live on
it (Piscart et al 2005; Benítez 2013).

The variations in habitat quality quickly and strongly influ-
ence several insect population parameters, when compared
to the other taxa, since they have several generations in a
short period of time (Didham 1998; Pearce & Venier 2006;
Nichols et al 2007). Among insects, the best indicator species
are those that spend their whole life within the studied hab-
itats (Clarke et al 1986; Camillo et al 1995). Thus, wasps that
nest in pre-existing cavities fit perfectly as a bioindicator
group because they depend on the availability of resources
in the local environment to feed their offspring (Evans &
Eberhard 1970; Tylianakis et al 2005). Additionally, this group
is easily sampled using trap nests (Coville 1982), a method
that ensures that these species actually inhabit the studied
region, thus excluding those that are just passing through
(Camillo et al 1995).

Known as spider predators, Trypoxylon (Trypargilum)
lactitarse Saussure, 1867 (Crabronidae), is considered fre-
quent in trap nests (Beyer et al 1987, Morato & Campos
2000, Buschini et al 2006, Araujo et al 2017), being more

abundant in forested environments, but also occurring in
deforested areas (Buschini & Wolff 2006). This species is
widely distributed from southern Argentina to southern
Canada (Coville 1981). Adults use floral resources (pollen
and nectar) as energy source, contributing to the pollination
of various plant species (Bohart & Menke 1976). However,
they also are effective as predators of several species of
spiders that are consumed as primary food source during
the larval development (Camillo & Brescovit 1999; Buschini
et al 2008).

As in most of the Hymenoptera, these insects present a
haplodiploid system, where unfertilized eggs give rise to
males and the fertilized ones give rise to females (Crozier &
Pamillo 1996). Due to their ability to control the spermathe-
ca, females are able to choose the sex of each offspring at
the moment of oviposition (Godfray 1988, Shintarou &
Takayoshi 1999). In addition, there is strong evidence that
females are able to adjust the sex ratio of their offspring as
a function of environmental conditions (Charnov 1982). In
Trypoxylon, one of the main characteristics associated with
sexual dimorphism is body size, where females are larger
than males and require greater amount of food (Buschini
2007). With this, the availability of resources may be a factor
that affects the proportion of the sexes within its offspring
(Morato & Campos 2000). Like other solitary wasp species,
all food necessary for the development of the larva to adult
stage is offered at only once (Molumby 1997, Strohm &
Linsenmair 1999). Thus, insufficient food supply at the time
of building their breeding cells may lead to stress during
offspring development, resulting in an increase in FA of their
structures (Niemi & McDonald 2004; Sanseverino &
Nessimian 2008). In flying animals, this stress can lead to
symmetrical differences in their wings which reduce the abil-
ity and aerodynamics of the flight, influencing its adaptive
value (Swaddle 1996).

In this study, we evaluated the efficiency of different
types of reforested habitats in the recovery of important
parameters necessary for the maintenance of the
T. lactitarse population in Southern Amazon. We specifically
tested whether (1) the abundance of individuals, (2) emer-
gence percentage, (3) proportion of males, (4) foraging ca-
pacity, and (5) fluctuating asymmetry are influenced by the
habitat type in the recovery process when compared with
primary forest.

Material and Methods

Study area

We conducted the fieldwork at São Nicolau farm (9°48′S and
58°15′W), located in the municipality of Cotriguaçu in the
north of Mato Grosso State, Brazil. The farm has 10,000 ha,
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of which 7000 ha are primary forest, 500 ha are secondary
forests, 1700 ha are different types of reforestation, and
300 ha are pastures used by cattle. Reforestations and sec-
ondary forests were both previously pasture before the re-
vegetation, which occurred between 1999 and 2000
(Rodrigues et al 2011). The regional climate is AW type,
according to the Köppen classification (warm and humid),
with an average annual temperature of 24°C, 85% humidity,
and 2300 mm of precipitation (Rodrigues et al 2011). In this
study, we collected data in five different habitats: (1) primary
forest (PF) (control), defined as a “terra-firme” and closed-
canopy forest without the influence of seasonal flooding of
larger rivers. The understory is highly biodiverse, relatively
open with a canopy height varying between 30 and 40 m
with some trees reaching up to 50 m high; (2) secondary
forest (SF), natural restoration without the presence of cattle
or anthropogenic interference. The understory of secondary
forests is extremely dense, with vegetation higher than 5 m;
there is a low leaf litter accumulation and light incidence; (3)
teak reforestation (TF) in monodominant stands of the exotic
Tectona grandis (Verbenaceae), characterized by an open
understory, deciduous leaf-fall pattern in the dry season,
and deep leaf litter accumulation; (4) ficus reforestation
(FR) in monodominant stands of the native Ficus maxima
(Moraceae), sourced from local seed provenance, and char-
acterized by a mixed-age understory shrubs, low leaf litter
accumulation, and some patches of grasses; (5) mixed refor-
estation (MP) of planted native tree species, including
Tabebuia chrysotricha (Bignoniaceae), T. roseo-alba,
T. impetiginosa, Cedrela fissilis (Meliaceae), Cordia alliodora
(Boraginaceae), Simarouba amara (Simaroubaceae),
Spondias mombin (Anacardiaceae), Hevea brasiliensis
(Euphorbiaceae), and Schizolobium amazonicum
(Fabaceae), with an understory of low shrubs and grasses,
and low leaf litter accumulation; (6) pasture (PT), dominated
by planted grasses (not more than 50 cm tall) used as food
for cattle, with very high light incidence, almost no woody
vegetation and an absence of leaf litter accumulation
(Rodrigues et al 2011). Pasture was used in our design as a
“starting point” of forest succession under different
reforestations.

Sample design

To sample T. lactitarse individuals, we used 10 sample units
for each habitat, except for primary forest (n = 14; Fig 1). The
minimum distance between each sampling unit of the same
treatment was 500 m. In each sample unit, we marked five
equidistant points at a distance of 50 m and installed blocks
of wood up to 1.5 m high. The wooden blocks were com-
posed of 40 holes distributed equally between the diameters
0.8, 1.2, 1.6, and 2.0 mm by 10 cm deep, where we inserted
tubes of black paperboard (Camillo et al 1995), totaling 320

blocks and 12,800 trap nests. We inspected the traps every
20 days between August 2016 and July 2017, and those oc-
cupied were collected and replaced by another trap with the
same measurements. In the laboratory, the trap nests
brought from the field were placed in test tubes, closed with
cotton, and kept in a dark room at temperatures of between
20°C and 25°C until the emergence of adults. Then, we
pinned the emerged adults, quantified the number of cells
built, identified their sex, and performed the measurements
of wing load (to evaluate the foraging capacity) and fluctuat-
ing asymmetry. Voucher specimens were deposited in the
Invertebrate Collection of the Universidade Federal de
Mato Grosso.

Morphometric measurements

To perform themorphometric measurements of T. lactitarse,
we randomly choose only one individual of each sex for each
nest that emerged adults, totalizing 119 specimens: PF
(male = 10; female = 17), SF (male = 10; female = 18), TR
(male = 10; female = 12), FR (male = 10; female = 12), MR
(male = 10: female = 10). Due to the low number of individu-
als that emerged in PT (n = 2, Table 1), it was not possible to
include this habitat in the morphometric analyses. To evalu-
ate the fluctuating asymmetry (FA) of individuals, we re-
moved the pair of forewings and photographed and mea-
sured the length of each wing with the aid of the software
Leica Application Suite version 2.0. The length of the fore-
wing measure starts at the beginning of the costal vein and
runs up to the most apical point of the wing. We evaluated
the foraging capacity of individuals based on the wing load
(WL) represented by the body dry mass (DM) divided by the
wing’s area (WA). This metric is considered a good predictor
of winged individuals’ flight capacity (Polidori et al 2013). We
measured DM with a precision balance of 0.1 mg and the
area of the forewing using the software ImageJ version
1.51n. We calculated WL using the formula WL = DM/WA.

Data analysis

We used generalized linear mixed models (GLMM’s) to de-
termine if the abundance, emergence percentage, and pro-
portion ofmales of T. lactitarse differ between primary forest
(control) and the habitats studied. For this, we used abun-
dance of individuals, emergence percentage, and proportion
of males as response variables. As an explanatory variable
(fixed effect) of the model, we used the type of habitat.
Considering that we performed repeated measures at each
habitat, we used sites as a random effect for all models, since
each replicate was visited 12 times (Crawley 2007). For
GLMM’s implementation, we used the glmmTMB package,
and the selection of the best model was given by the com-
parison using Akaike information criterion.

574 Araújo et al



We used generalized linear models (GLM’s) with
Gaussian distribution to determine whether FA and WL
varied between habitats. As explanatory variables, we
used habitats and the sex of the individuals measured.
To verify if the sex of the individuals influenced the re-
sponse variables within each habitat, we also added to
the models the interaction between sex and habitat.
After performing the GLMs, we performed the planned
comparisons analysis in order to determine if the values
of FA and WL (response variables) were different between
primary forest and each habitat type. The planned com-
parison performed for FA and WL was performed sepa-
rately for each sex. All analyses were performed in pro-
gram R version 3.5.1 (R Core Team 2018).

Results

During the study period, we collected a total of 839
cells (368 nests) of T. lactitarse in the 64 sample units.

The number of cells was highly correlated with the
number of nests (Pearson’s r = 0.95, p < 0.001, n = 64).
Among habitats, PT and FR showed lower abundance of
individuals in relation to PF (control), (Z = − 3.727, p =
0.000, and Z = − 2.460, p < 0.01, respectively). For hab-
itats TR, MR, and SF, no significant differences were
found (Fig 2).

The emergence percentage of T. lactitarse in the TR,
MR, and PT was lower than PF (Z = − 2.066, p = 0.038,
Z = − 4.186, p < 0.001 and Z = − 2.043, p = 0.041, respec-
tively). The emergence average in PF was 51.94% of the
cells, while in TR 40.21% of the cells built had emerged
adults. In MR and PT, the emergence percentage was
only 28.74% and 20%, respectively. The emergence per-
centage of SF and FR did not differ in relation to PF,
w i th 61 . 18% and 50.53% of ind iv idua l s born ,
respectively.

In relation to proportion of males, TR presented the
highest deviation, 75.8% of the individuals born were
males, followed by FR and MR, with 69.5% and 57.8%,

Fig 1 Map showing the spatial arrangement of our 64 sample units established in six different habitats at the São Nicolau farm, municipality of
Cotriguaçu, State of Mato Grosso, Brazil.

Table 1 Description of the number of cells built, emergence percentage, proportion of males and females of Trypoxylon (Trypargilum) lactitarse
individuals born in the habitats studied (mean ± standard error). Statistical values represent the results of planned sex ratio comparisons between
pasture (PT), teak reforestation (TR), ficus reforestation (FR), mixed reforestation (MR), and secondary forest (SF) with primary forest (PF).

Environments No. of cells built Emergence (%) Males born (%) Female born (%)

PT 1.0 ± 0.55* 13.33 ± 10.89*

TR 16.2 ± 3.57 40.20 ± 2.25* 75.81 ± 2.33* 24.19 ± 3.45

FR 6.4 ± 1.99* 50.53 ± 5.91 69.57 ± 4.43* 30.43 ± 6.27

MR 9.9 ± 3.09 28.74 2.07* 57.81 ± 6.45* 42.19 ± 8.96

SF 12.6 ± 3.43 61.18 ± 1.90 49.31 ± 4.85 50.69 ± 4.79

PF 9.4 ± 2.03 51.94 ± 0.51 43.42 ± 5.54 56.58 ± 4.69

*Coefficients are significantly different from zero (p < 0.05).
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respectively. The habitats with the lowest proportions
of emerged males were SF (49.31%) and PF (43.42%).
When comparing the proportion of males between hab-
itats studied and PF, those actively reforested showed
significantly higher values (TR: Z = 3.421, p < 0.000; MR:
Z = 2.468, p < 0.013; FR: Z = 2.362, p < 0.018) (Fig 3,
Table 1). Due to the low number of emergences in PT
(n = 2), this habitat was excluded from the analysis.

The FA of the forewings differed among T. lactitarse indi-
viduals from the different habitats (F5,118 = 7.222; p = 0.0001).
This asymmetric difference was also associated with the sex
of the individuals (F1,113 = 4.560; p = 0.029). In fact, in all hab-
itats studied, the emerged individuals showed a certain de-
gree of asymmetry in the length of their wings. However, the
lowest asymmetry was observed in the PF. In the planned
comparisons, we could observe that the females born in the
TR presented greater asymmetric variation than the females
born in PF (F1,64 = 27.589; p < 0.000). In the case of males, no
differences were observed between the different treatments
in relation to the PF (Fig 4, Table 2).

T. lactitarse emerged individuals also differed in WL among
habitats (F5,118 = 3.455; p = 0.002). This difference was associat-
edwith sex (F1,113 = 37.100; p < 0.001) and the variation between
sexes was different among habitats (F3,112 = 9.935; p < 0.001). In
PF, whilemales on average presented the lowestWL values, the
females showedWL values close to the highest values recorded
for all other habitats (Fig 5). This dimorphism in WL was also
observed in MR and SF. Although a similar pattern was ob-
served in FR, this dimorphism was less pronounced.
Additionally, in TR, the opposite was found, females and males
collected in this habitat presented the lowest and highest values
of WL, respectively. When compared with PF, these differences
were significant (Fig 5, Table 2).

Discussion

Although T. lactitarse is considered a species of great plasticity,
potentially occupying different environments (Pérez-Maluf
1993, Buschini et al 2006, Oliveira-Nascimento & Garófalo
2014, Araujo et al 2017), the different types of habitats studied
strongly influenced their nesting behavior and parameters that
influence the population structure of their next generation.
Biological and structural changes occurring in altered environ-
ments may have direct effects on resident species (Morato
2001; Abrahamczyk et al 2011). In the present study, we showed
that T. lactitarse occurs and builds nests in all habitat types
studied. In all types of tree plantations, T. lactitarse abundance
was higher than that in pasture. However, the highest abun-
dance of T. lactitarse occurred in primary forests, probably due
to the greater availability of resources and less variation in the
environmental conditions in this environment. The lack of veg-
etation cover and a microenvironment that controls the

variation and amplitude in daily temperature was possibly the
cause of the low occurrence and highmortality of T. lactitarse in
pastures. These characteristics are possibly ensured by the

Fig 2 Mean number of cells built by Trypoxylon (Trypargilum) lactitarse
among habitats studied in the southeast of the Amazon: pasture (PT),
teak reforestation (TR), ficus reforestation (FR), mixed reforestation
(MR), secondary forest (SF), and primary forest (PF).

Fig 3 Sex ratio of individuals of Trypoxylon (Trypargilum) lactitarse born
in the habitats studied in the southeast of the Amazon: teak
reforestation (TR), ficus reforestation (FR), mixed reforestation (MR),
secondary forest (SF), and primary forest (PF).
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intensive cattle grazing that hinders the establishment of other
species of plants other than grasses (Kurn et al 1994, Klein et al
2002, Dunne et al 2011, Tscharntke et al 1998). The species
preference for forested environments has also been observed
in other studies (Buschini & Wolff 2006; Araujo et al 2017).

Although considered generalist, T. lactitarse appears to be
more flexible in areas with higher prey availability (Buschini
et al 2008). Spiders commonly predated by Trypoxylon usu-
ally live on plants where they hunt and breed (Uetz et al

1999, Buschini et al 2010, Pitilin et al 2012). So, the prey
scarcity may also contribute to the low colonization success
in the pasture. In studies with other solitary Hymenoptera,
spider-hunting wasps have been positively correlated with
the complexity of the studied environments (Klein et al
2002, Loyola & Martins 2008, Steffan-Dewenter &
Tscharntke 2002, Araujo et al 2017). This is possibly related
to their low dispersal capacity, and due to their specialization
in food types, nesting sites, and materials requested for

Fig 4 Asymmetric variation in the length of the posterior wings ofmales
and females of Trypoxylon (Trypargilum) lactitarse among habitats
studied in the southeast of the Amazon: teak reforestation (TR), ficus
reforestation (FR), mixed reforestation (MR), secondary forest (SF), and
primary forest (PF).

Table 2 Description of the asymmetry in wing length and wing load of Trypoxylon (Trypargilum) lactitarse individuals born in the habitats studied
(mean ± standard error). The statistical values represent the results of the planned comparison test of these variables for the male and female
individuals born in reforestation in relation to the primary forest.

Environments Sex Wing asymmetry (mm) Wing load (mg/mm2)

Mean ± SE F value p value Mean ± SE F value p value

TR Female 0.44 ± 0.06 27.59 0.0001* 5.3 ± 0.33 13.25 0.0001*

Male 0.23 ± 0.09 2.892 0.0959 5.6 ± 0.32 16.57 0.0001*

FR Female 0.29 ± 0.03 0.273 0.6032 5.5 ± 0.21 2.45 0.1214

Male 0.22 ± 0.04 0.648 0.425 5.0 ± 0.23 0.653 0.4232

MR Female 0.34 ± 0.10 3.461 0.0674 5.7 ± 0.20 1.083 0.3018

Male 0.21 ± 0.04 0.949 0.3353 4.7 ± 0.12 0.64 0.4279

SF Female 0.18 ± 0.02 1.872 0.176 6.3 ± 0.13 0.373 0.5432

Male 0.15 ± 0.03 0.705 0.4055 4.8 ± 0.16 0.653 0.4232

PF Female 0.08 ± 0.01 – – 6.2 ± 0.15 – –

Male 0.09 ± 0.01 – – 4.3 ± 0.12 – –

*Coefficients are significantly different from zero (p < 0.05).

Fig 5 Variation in wing load of Trypoxylon (Trypargilum) lactitarsemales
and females emerged in the habitats studied in the southeast of the
Amazon: teak reforestation (TR), ficus reforestation (FR), mixed
reforestation (MR), secondary forest (SF), and primary forest (PF).
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nesting (Gathman & Tscharntke 2002, Steffan-Dewenter &
Tscharntke 2002, Buschini et al 2008, Zurbuchen et al 2010).
This suggests that all tree plantation types at least favored
the colonization of T. lactitarse at local scale and, at the same
time, the transformation of forests into structurally simple
environments such as pastures may lead to its local
extinction.

Even though TR presented high T. lactitarse nesting
rates in trap nests in relation to other reforestation types,
TR did not prove to be adequate for the recovery of the
species population patterns observed in PF. This habitat
type presented greater mortality of immatures and male-
biased sex ratio for individuals born. At the same time,
although FR and MR did not show difference in birth rates
in relation to PF, they also showed male-biased sex ratio
for the emerging offspring. The sex ratio deviation for
Trypoxylon species has also been recorded in other stud-
ies (Assis & Camillo 1997, Shintarou & Takayoshi 1999,
Buschini 2007, Oliveira-Nascimento & Garófalo 2014,
Buschini & Bergamaschi 2014). This feature has important
consequences for individual fitness and population persis-
tence and may occur in response to variations in environ-
mental conditions, such as low food availability (Hamilton
1979, Molumby 1997, Shintarou & Takayoshi 1999). The
sex-biased offspring during the nesting process may occur
when there is a strong size dimorphism between sexes
(Fisher 1958). Among Trypoxylon, males are noticeably
smaller and thus require less investment in food resour-
ces for their full development (Buschini et al 2010). Thus,
although tree plantations favored the local T. lactitarse
occurrence in relation to pasture, a suboptimal availability
of food resources may have led the females to invest in a
male-biased offspring (Krombein 1967, Sheldon et al 1998,
Polidori et al 2013). Another explanation for the smaller
number of females in these environments is the differ-
ence in mortality between the sexes (Brockmann &
Grafen 1992). Since the resource used by one individual
is not available to the other (Buschini et al 2010), the lack
of sufficient food for the female offspring may have in-
creased its mortality in these environments. As this is a
pattern observed at local scale (site), the low availability
of females has a negative impact at the population level,
reducing mating and nesting rate. This reduces the persis-
tence of T. lactitarse in the planted forests (Hardy et al
1998, 2000, Nunney & Luck 1988). Alternatively, the local
persistence of species can be dependent on constant im-
migration of female individuals from like primary forest.

Among the habitats studied, the individuals of T. lactitarse
emerged on SF presented morphological patterns more sim-
ilar to the ones emerged in PF. In tropical environments,
forest recovery in abandoned agricultural land can be very
fast in the case of low-intensity land use (Chazdon 2003). Soil
fertility and the presence of nearby forest remnants are also

factors that facilitate and accelerate the recovery of these
environments (Guariguata & Ostertag 2001). In the Western
Amazon region, pastures with less than 8 years of abandon-
ment already had tree species growing (Uhl et al 1988). All
the habitat types of the present study are surrounded by an
extensive area of primary Amazon rainforest. Such vast
source of propagules should decrease the restoration time
on abandoned pastures, creating habitats richer in resources
to T. lactitarse than reforested sites.

Although studies suggest that in the haplodiploid species
of Hymenoptera the diploidism is able to reduce the effects
of the stress in function of heterozygosity (Clarke et al 1986,
Tomkins & Kotiaho 2001, Miklasevskaja & Packer 2015), our
study shows that females (diploids) were more asymmetric
than males. In addition, the variation in asymmetry of
females emerged in TR was higher in relation to the ones
emerged in PF. Curiously, males show no significant variation
between habitats. Environments with some type of restric-
tion may impose difficulties to the establishment of coloniz-
ing species, promoting low heterozygosity due the high rates
of inbreeding (Mitton & Grant 1984). Therefore, individuals
and populations with low heterozygosity are sensitive to dis-
turbances during their development (Clarke 1993; Tomkins &
Kotiaho 2001). This suggests that although T. lactitarse
females are able to nest in TR, this habitat may exert pres-
sures on the quality of their offspring. So, synergistically with
the male-biased populations, the habitat can also negatively
affect the quality of females born. We believe that these
values were less accentuated for males by the fact that they
needed fewer resources for their development. Thus, in a
resource-deficient environment, females are more suscepti-
ble to development problems than males, which may ac-
count for the greater male birth in habitats like TR, MR,
and FR.

The effect of environmental stress on the FA increase of
organisms has been already reported in several groups, such
as other insects (Chang et al 2007, Pinto et al 2012, Banaszak-
Cibicka et al 2018), birds (Vangestel et al 2011), crustaceans
(Ho et al 2009), fishes (Vandenbussche et al 2018), and
plants (Lobregat et al 2017). The asymmetric differences, as
observed between the wings of the T. lactitarse females in
TR, potentially affect their adaptive success (Swaddle 1996).
The disparity in these structures decreases the capability to
escape from predators by reducing the efficiency in take-off
and maneuverability (Tomkins & Kotiaho 2001), as well as
reducing foraging abilities (Swaddle et al 1997; Samejima &
Tsubaki 2010). A study on parasitic wasps (Bennett &
Hoffmann 1998) showed that the asymmetry of the wings
was negatively associated with the ability to find the eggs of
the host (Lepidoptera). In addition, the impairment of forag-
ing abilities may affect the female’s fitness during the nesting
process (Thomas 1993). Therefore, even though adults build
nests with relatively high abundance, the females of
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T. lactitarse populations born in TR are particularly more
asymmetrical, decreasing the potential of population persis-
tence on such habitats.

Females born in TR also differed in WL relative to the
females emerged in PF. A lower WL reflects greater flight
efficiency, since they have larger wings in relation to the
body (Polidori et al 2013). This feature may have favored
the success in the occupation of this reforestation by the
founding females. We just measured the WL of the females
born in TR, not the adult ones. However, if WL is genetically
determined (Endler 1977, Lack et al 2015), the population of
T. lactitarse is composed by females that behave as long-
distance dispersers and it reinforces the hypothesis of the
dependence of the populations living in TR on females con-
stantly migrating from other sites. Additionally, large wings
need more energy for their development and, in an environ-
ment with limiting resources, these structures are more sus-
ceptible to the FA caused by stress during their development
(Leung & Forbes 1996). Although larger wings may be a fea-
ture that facilitated the occupation in TR by females, it pos-
sibly does not remain stable throughout the generations. The
males born in TR have an inverse WL pattern in relation to
females. Their higher WL reflects a higher body weight
(Polidori et al 2013). Studies indicate that the increase in
WL is positively related to the increase in the flying muscu-
lature (Kemp & Alcock 2008; Yao 2011). Although greater
flight musculature results in higher energy expenditure, indi-
viduals with these characteristics present greater maneuver-
ability and acceleration during their foraging (Marden 1989).
In a study on a “cicada killer” wasp, greater competitive suc-
cess was observed in territorial males with higher flying mus-
culature (Coelho & Holliday 2001), and the same pattern was
found for dragonflies (Marden 1989). Some studies show
that Trypoxylon males may exhibit territorial behavior to in-
crease the chances of reproductive success (Alcock 1975;
Buschini & Donatti 2012); therefore, a greater flight muscu-
lature may give themmore success for intercepting the long-
distance female since they can take off with greater speed
(Byrne et al 1988). Thus, environments with low availability
of females may have favoredmales with higherWL, since this
feature seems to increase the success in interception of
females for mating.

As expected, among the different habitat types evaluated,
pastures were inadequate for the establishment of
T. lactitarse. This demonstrates the need for reforestation
to recover local populations from deforested areas.
However, the different types of tree plantations presented
a lower efficiency in the recovery of population patterns in
relation to natural regeneration areas (secondary forest). The
planted species used in the present study, especially Tectona
grandis, probably did not favor the recovery of environmen-
tal conditions that could aid in the re-establishment of
T. lactitarse population patterns. The success of secondary

forest was possibly due to its proximity to the primary forest
(source of colonizing species). This may have facilitated the
establishment of native species and consequently led to the
development of more similar characteristics found in natural
environments, such as food availability and adequate envi-
ronmental conditions. However, the effectiveness of second-
ary forests from abandoned areas may fail in regions without
the presence of nearby natural forests. This demonstrates
that environmental recovery projects should be evaluated
individually, taking into account the characteristics of each
area to be recovered.
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